Semiautomatic segmentation with compact shape prior
نویسندگان
چکیده
In recent years, interactive methods for segmentation are increasing in popularity due to their success in different domains such as medical image processing, photo editing, etc. We present an interactive segmentation algorithm that can segment an object of interest from its background with minimum guidance from the user, who just has to select a single seed pixel inside the object of interest. Due to minimal requirements from the user, we call our algorithm semiautomatic. To obtain a reliable and robust segmentation with such low user guidance, we have to make several assumptions. Our main assumption is that the object to be segmented is of compact shape, or can be approximated by several connected roughly collinear compact pieces. We base our work on the powerful graph cut segmentation algorithm of Boykov and Jolly, which allows straightforward incorporation of the compact shape constraint. In order to make the graph cut approach suitable for our semiautomatic framework, we address several well-known issues of graph cut segmentation technique. In particular, we counteract the bias towards shorter segmentation boundaries and develop a method for automatic selection of parameters. We demonstrate the effectiveness of our approach on the challenging industrial application of transistor gate segmentation in images of integrated chips. Our approach produces highly accurate results in real-time. 2008 Elsevier B.V. All rights reserved.
منابع مشابه
MR diffusion-weighted imaging-based subcutaneous tumour volumetry in a xenografted nude mouse model using 3D Slicer: an accurate and repeatable method
Accurate and repeatable measurement of the gross tumour volume(GTV) of subcutaneous xenografts is crucial in the evaluation of anti-tumour therapy. Formula and image-based manual segmentation methods are commonly used for GTV measurement but are hindered by low accuracy and reproducibility. 3D Slicer is open-source software that provides semiautomatic segmentation for GTV measurements. In our s...
متن کاملA Framework of Vertebra Segmentation Using the Active Shape Model-Based Approach
We propose a medical image segmentation approach based on the Active Shape Model theory. We apply this method for cervical vertebra detection. The main advantage of this approach is the application of a statistical model created after a training stage. Thus, the knowledge and interaction of the domain expert intervene in this approach. Our application allows the use of two different models, tha...
متن کاملEfficient Semiautomatic Segmentation of 3D Objects in Medical Images
We present a fast and accurate tool for semiautomatic segmentation of volumetric medical images based on the live wire algorithm, shape-based interpolation and a new optimization method. While the user-steered live wire algorithm represents an efficient, precise and reproducible method for interactive segmentation of selected twodimensional images, the shape-based interpolation allows the autom...
متن کاملCurvature Prior for MRF-Based Segmentation and Shape Inpainting
Most image labeling problems such as segmentation and image reconstruction are fundamentally ill-posed and suffer from ambiguities and noise. Higher order image priors encode high level structural dependencies between pixels and are key to overcoming these problems. However, these priors in general lead to computationally intractable models. This paper addresses the problem of discovering compa...
متن کاملMulti-objective shape segmentation and labeling
Shape segmentations designed for different applications show significant variation in the composition of their parts. In this paper, we introduce the segmentation and labeling of shape based on the simultaneous optimization of multiple heterogenous objectives that capture application-specific segmentation criteria. We present a number of efficient objective functions that capture useful shape a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008